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It is shown that, in axs3d nonlinear photonic crystal, the third-harmonic conversion efficiency can be
enhanced by about three orders of magnitude via the formation of self-organized localized states inside the
gaps as compared with that in a bulk medium of the same length with a perfect phase-matching condition.
These localized states contain both the fundamental and third-harmonic frequencies located in different gaps.
Their existence is a result of both the Kerr effect and the large energy transfer between fundamental and
third-harmonic waves.
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Recently, great interest has been devoted to nonlinear
photonic crystalssNPCsd f1g. The combination of photonic
crystals and nonlinear optics has opened up a new area of
research for both science and application. For example, in a
xs2d NPC, it has been shown that the efficiency of second-
harmonic sSHd generation can be enhanced by use of the
simultaneous availability of field localization at the band
edge and a good phase-matching conditionf2g. The gap soli-
tons and two-color gap solitons with fundamental and SH
frequencies located in different gaps have been found inxs2d

NPCs f3–7g. For xs3d NPCs, two different nonlinear effects
have been studied: Kerr nonlinearity and third-harmonic
sTHd generation. For TH generation, Martemyanovet al.
have recently studied the enhancement of TH conversion ef-
ficiency by making use of the field localization of the band-
edge state or the defect statef8g. Markowicz et al. have
experimentally demonstrated the enhancement by making
use of phase matching provided by the periodicity of photo-
nic crystalsf9g. For Kerr nonlinearity, by changing the light
intensity at a frequency in the pass band, it has been shown
that the band-edge frequency can be dynamically tunedf10g.
When the frequency is in the gap, the self-organized local-
ized statesSOLSd, which is usually associate with gap soli-
ton, can be formedf11–19g. However all the SOLS found
previously inxs3d NPCs are derived from the pure Kerr effect
by ignoring the influence of the third-harmonic waves gen-
erated due toxs3d nonlinearity. This is valid only when the
phase-matching condition does not hold.

In this work, we show that the interplay between two
different xs3d effects in a NPC can give rise to interesting
phenomena with potential applications. Specifically, we con-
sider the situation in which the phase-matching condition
holds due to the periodicity of the photonic crystals and the
nonlinear interaction between the TH waves generated, and
the fundamental waves via Kerr effect cannot be ignored. We
find that, through the formation of a coupled localized state
sCLSd with the fundamental and the TH frequencies located
in different gaps coupled, the TH conversion efficiency can
be enhanced significantly, e.g., by about three orders of mag-
nitude, as compared with that in a bulk medium of the same
length with a perfect phase-matching condition.

Consider a one-dimensionals1Dd NPC with N unit cells.
One layer in each unit cell is linear, with the refractive index
n1 and widthl1. The other layer is nonlinear, with the weak-
field refractive indexn2 and a third-order nonlinear suscep-
tibility xs3d. The width of the nonlinear layer isl2. A pump

wave ẼF of frequency v is incident normally upon the
sample along thez axis. When the phase-matching condition

is good, a TH waveẼH can be generated via thexs3d nonlin-
earity. We represent the fundamental and the TH waves

by ẼFsz,td=EFszde−ivt+c.c. and ẼHsz,td=EHszde−3ivt+c.c.,
where Easz,td=Ea

+szd+Ea
−szd sa=F ,Hd and Ea

±szd
=Aa

±szde±ikaz. HereEa
+ andEa

− denote the forward and back-
ward propagating components, respectively. From the

nonlinear polarization P̃sz,td=xs3dẼsz,td3, where Ẽsz,td
=ẼFsz,td+ẼHsz,td, we have P̃Fsz,td=xs3df3suEFu2

+2uEHu2dEFe−ivt+3EF
*2EHe−ivt+c.c.g and P̃Hsz,td=xs3d

3f3s2uEFu2+ uEHu2dEHe−3ivt+EF
3e−3ivt+c.c.g. Substituting Ẽa

and P̃a into ¹2Ẽa−f«svad /c2gs]2Ẽa /]t2d=s4p /c2d
3s]2/]t2dP̃a and making the slowly-varying-amplitude ap-
proximation, we obtain

dAF
±

dz
= ± ikFAF

± ± igFAF
±* 2

AH
± e±iDkz, s1ad

dAH
±

dz
= ± ikHAH

± ± igHAF
±3

e7iDkz, s1bd

where

gF = 6pvxs3d/nsvdc,

gH = 6pvxs3d/ns3vdc,

kF = gFsuEF
+ + EF

−u2 + 2uEH
+ + EH

− u2d,

s2d
kH = 3gHs2uEF

+ + EF
−u2 + uEH

+ + EH
− u2d,

and Dk=kH−3kF produces phase mismatch in the case of
weak fields. Notice that the second terms in the right-hand
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side of Eqs.s1ad ands1bd are responsible for the TH conver-
sion; whereas the first terms induce the self-phase and cross-
phase modulations. LettingAa

± =Aa
±8e±ikaz, we re-write Eq.

s1d in the following form:

dAF
±8

dz
= ± igFkc

±*AH
±8e±iDk8z, s3ad

dAH
±8

dz
= ± igHkc

±AF
±8e7iDk8z, s3bd

where
kc

± = AF
±82

and

Dk8 = skH − 3kFd + skH − 3kFd. s4d

Dk8 in Eq. s4d produces phase mismatch in the case of strong
fields. To solve Eq.s3d we divide each nonlinear layer intoM
sublayers and assume values ofkF, kH, andkc

± to be constant
and equal to their mean values in each sublayerf18,19g. In
our calculations,M is taken so that a convergent result is
reached. Solving Eq.s3d in each sublayer and using the con-
tinuity of both E and the derivative ofE at the interface of
two sublayers, we finally obtain the following relation:

3
EF

+sls,id
EF

−sls,id
EH

+ sls,id
EH

− sls,id
4 = tss,id3

EF
+sls,i−1d

EF
−sls,i−1d

EH
+ sls,i−1d

EH
− sls,i−1d

4 , s5ad

tss,id =
1

23
s1 + aFdt11

+ s1 − aFdt11
+ s1 + aHdt12

+ s1 − aHdt12
+

s1 − aFdt11
− s1 + aFdt11

− s1 − aHdt12
− s1 + aHdt12

−

s1 + aFdt21
+ s1 − aFdt21

+ s1 + aHdt22
+ s1 − aHdt22

+

s1 − aFdt21
− s1 + aFdt21

− s1 − aHdt22
− s1 + aHdt22

−
4 ,

s5bd

where ls,i is the width of the sublayeri in the s-layer, aF
=nss,i−1dsvd /nss,idsvd andaH=nss,i−1ds3vd /nss,ids3vd, with nss,id

the refractive index of the sublayer,

t11
± = Fd0

± + Dk8

2d0
± expS7 i

d0
± − Dk8

2
ls,iD

+
d0

± − Dk8

2d0
± expS± i

d0
± + Dk8

2
ls,iDGexpf± iskF + kFdls,ig,

t12
± =

gFkc
±*

d0
± FexpS± i

d0
± + Dk8

2
ls,iD

− expS7 i
d0

± − Dk8

2
ls,iDGexpf± iskF + kFdls,ig,

t21
± =

gHgc
±

d0
± FexpS± i

d0
± − Dk8

2
ls,iD

− expS7 i
d0

± + Dk8

2
ls,iDGexpf± iskH + kHdls,ig,

t22
± = Fd0

± + Dk8

2d0
± expS± i

d0
± − Dk8

2
ls,iD

+
d0

± − Dk8

2d0
± expS7 i

d0
± + Dk8

2
ls,iDGexpf± iskH + kHdls,ig,

with d0
±=ÎsDk8d2+4gFgHukc

±u2. Note that it is through rela-
tion s5d, which couples the forward and backward propagat-
ing waves. For the linear layer, we takexs3d=0 andM =1.
From the products of these matrices,T=pi=1

NsM+1dtss,id, we ob-
tain the amplitudes of the fundamental and TH waves atz
=0 as EF

−s0d=sT21T44−T24T41d / sT24T42−T22T44dEF
+s0d and

EH
− s0d=sT22T41−T21T42d / sT24T42−T22T44dEF

+s0d, respectively,
and at z=L as EF

+sLd=T11EF
+s0d+T12EF

−s0d+T14EH
− s0d and

EH
+ sLd=T31EF

+s0d+T32EF
−s0d+T34EH

− s0d, respectively.
The above equations are solved numerically by using an

iterative proceduref18,19g. We emphasize that all the solu-
tions presented in this work are stable. In fact, if a solution is
not stable in time, i.e., the solution is not a fixed attractor, the
iterative procedure will never be convergent to a limiting
result. For calculations, we use a 1D model NPC withN
=18 unit cells, with n1=1, n2

2sld=8.340 96+0.145 40/sl2

−0.239 792d+3.239 24/sl2/36.5252−1d f20g, where l
=2pc/v is the wavelength in vacuumsin units of mmd, l1
=0.112mm, and l2=0.10mm. As we will see below, such
choices ofn1, n2, l1, and l2 can give a near phase matching
for TH conversion when the fundamental wavelengthlF is
chosen near the high-wavelength band edge of the first gap.
It should be pointed out that the other choices ofn1, n2, l1,
and l2 will give results similar to those presented in this
work, provided that the values ofl1 and l2 are adjusted so
that they give a near phase matching for TH conversion
when the fundamental wavelengthlF is chosen near the
high-wavelength band edge of the first gap and the corre-
sponding TH wavelengthlH is located near that of another
gap. Thus, the general features obtained in this work should
not be limited to the specific model parameters we have cho-
sen above. As for third-order susceptibility, we choose a di-
mensionlessxs3d=−10−4 for calculations. Therefore, the cor-
responding fields appearing in our calculations are also
dimensionless. The conversions ofxs3d=−10−4 and the fields
used in our calculations to those in a realistic situation will
be discussed at the end of the work.

The transmission spectrum of the linear model sample is
shown in Fig. 1sad and the corresponding effective index of
refractionnef f is shown in Fig. 1sbd by a solid line, where the
dotted line is for n2sld. The wavelength at the high-
wavelength band edge of the first gap isl1=901.6 nm and
that of the third gap isl3=298.95 nm. From Fig. 1sbd we
note that, for the fundamental wavelengthlF chosen nearl1,
the TH conversion has a good phase-matching condition. As
is known, thexs3d nonlinearity can induce the shift of the
band edge or the formation of gap solitons for the fundamen-
tal wavesf10–19g via the first term on the r.h.s. of Eq.s1ad.
Thus, in order to take advantage of their localized fields to
enhance the TH conversion, which is represented by the sec-
ond term on the r.h.s. of Eq.s1bd or the r.h.s. term of Eq.
s3bd, we should chooselF slightly smaller thanl1 for the
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negativexs3d. In Fig. 2 we show some typical results of out-
put TH intensitiesIHsLd= uEH

+ sLdu2 and IHs0d= uEH
− s0du2 for

various lF. When lF is very nearl1, the xs3d nonlinearity
induces the shift of the band edge. The maximum TH con-
version in Fig. 2sad occurs at about the input amplitude that
shifts the band edge tolF. As lF is moved away froml1, the
maximum TH conversion efficiency is increased. This occurs
for two reasons. First, aslF moved away froml1 the band-
edge state becomes more localized and thus the fundamental
field inside the sample increases. Second, both the increase
of the localized fieldsnonlinear effectd and the move oflF
slHd slinear effectd give rise to a decrease in the phase mis-
match conditionuDk8u in Eq. s4d. WhenlF is further moved
into the gap, the formation of gap soliton forlF occurs. This
leads to the bistability of the fundamental field inside the
sample. The bistable output for the TH wave is shown in Fig.
2sbd. Compared with Fig. 2sad, Fig. 2sbd shows clearly the
enhancement of TH conversion via the formation of gap soli-
tons forlF. It should be pointed out that althoughlF in Fig.
2sbd slF=898 nm and 896 nmd is now inside the first gap,
the TH waves slH=299.3 nm for curves 1 and 18 and
298.7 nm for curves 2 and 28d are still close to the high-
wavelength band edge of the third gap.

When lF is further moved into the gap and the corre-
spondinglH is now pushed into the third gap, the tristability
behavior occurs. Figures 3sad and 3sbd show the two typical
results of IHsLd and IHs0d for lF=892.5 nm slH

=297.5 nmd and lF=891 nm slH=297 nmd, respectively.
We note that there exists an optimal wavelength atlF
<892.5 nm where the sum ofIHsLd / I0 and IHs0d / I0 reaches
a maximum. This corresponds to the situation in which the
induced localized state gives rise to a nearly perfect phase-

match condition; i.e.,uDk8u<0 in Eq. s4d. Note also that the
energy-transfer efficiency shown in Fig. 3sad is about 43% at
point A8, which is about three orders of magnitude larger
than that in a bulk medium of the same length, i.e.,L=sl1
+ l2dN=3.816mm, with a perfect phase-match condition. In
Fig. 3scd we show the correspondingIFsLd= uEF

+sLdu2 and
IFs0d= uEF

−s0du2 for lF=891 nm. We note that the intensity
distributions forlF at pointsA andB are both localized with
single envelope. The state at pointB is derived from the gap
soliton found previously when there is no TH conversion
f11–18g. The transmission behavior of this case is shown in
the inset of Fig. 3scd, where there exists only one single-
envelope localized state at pointC f11g, which has perfect
transmission at the same value ofuEF

+s0du as that of pointB.
In the presence of TH conversion, the transmission atB is
slightly smaller than unity due to a small amount of energy
transfer from fundamental waves to TH waves, as shown in
the corresponding pointB8 in Fig. 3sbd. In addition to B,
there exists another stable localized state at pointsD andD8
at the sameuEF

+s0du, which has a much larger TH intensity.
The pointsA andA8 emerging fromD andD8 represent the
same branch of stable localized state, but with wave func-
tions symmetric to the center of the sample. SincelH is now
located inside the third gap, the intensity distribution forlH
is also localized. Thus, the new state atA andA8 represents
a coupled localized statesCLSd containing both fundamental
and TH frequencies located in different gaps.

FIG. 2. Third-harmonic conversion efficiencies,IHsLd / I0 ssolid
linesd and IHs0d / I0 sdotted linesd, versus the incident amplitude
uE1

+s0du, whereIHsLd= uEH
+ sLdu2, IHs0d= uEH

− s0du2, andI0= uEF
+s0du2. sad

Curves 1 and 18 for fundamental wavelengthlF=901 nm; curves 2
and 28 for lF=900.5 nm.sbd Curves 1 and 18 for lF=898 nm;
curves 2 and 28 for lF=896 nm.

FIG. 1. sad Transmission spectrum of the linear sample.sbd Ef-
fective refractive-index dispersion of the linear samplessolid curved
and the weak-field refractive-index dispersion of the nonlinear layer
sdotted curved.
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In Fig. 4, we show the CLS oflF andlH for the pointA8
in Fig. 3sad, where maximum TH conversion occurs. Figure
4 shows clearly two localized distributions forlF and lH,
both symmetric to the center of the sample. Their magnitudes
are comparable, indicating significant energy exchange be-
tween lF and lH occurring in this new state. Its existence
greatly enhances the TH conversion. This is in contrast with
the state at pointsB and B8. Although their intensity distri-
butions are also localized for bothlF and lH, the intensity
for lH is only about 3% of that forlF. It should be men-
tioned that, similar to the gap soliton at pointC in the inset
of Fig. 3scd, the shape and size of the CLS at pointA8 is also
insensitive to the sample thickness. This can be understood
as the fields outside the core regions of the CLS for bothlF
andlH are exponentially small and their contribution to the

energy exchange is negligible. The formation of this CLS is
a result of both Kerr effect and large energy exchange be-
tweenlF andlH. The Kerr effect is represented by the first
terms on the r.h.s. of Eqs.s1ad ands1bd. These terms change
only the phases oflF and lH through both self-phase and
cross-phase modulations. However, the second terms on the
r.h.s. of Eqs.s1ad ands1bd induce also the energy exchanges
betweenlF andlH. Such energy exchange inxs3d NPCs was
first addressed in Ref. 21. It should be mentioned that the
formation mechanism of this CLS is different from the two-
color gap soliton found inxs2d NPCsf3–7g. In xs2d NPCs, the
formation of two-color gap soliton arises from the terms that
are equivalent to the second terms on the r.h.s. of Eqs.s1ad
ands1bd, and there exists no genuine Kerr effect. In the case
of a very large phase mismatch, thexs2d nonlinearity can be
reduced to the Kerr-equivalent limit through cascadingxs2d

effects f3–7g. However, in this case, there exists almost no
energy conversion from the fundamental to the SH waves.
The presence of the Kerr effect in the first terms on the r.h.s.
of Eqs.s1ad and s1bd is crucial to obtain the CLS shown in
this work. In fact, we cannot obtain this CLS if the first terms
in Eqs.s1ad and s1bd are dropped. We also mention that the
CLS presented in this work is also different from the multi-
frequency gap solitonsMFGSd found in Ref.f19g. The dif-
ference is that the formation of a MFGS is due to synergic
spatial modulations of dielectric constant arising from inten-
sity distributions at different frequencies. That is, a MFGS is
due solely to the Kerr effect and there exists no energy ex-
change between any two frequency components.

Finally, we give an estimate of the source power required
to observe the phenomena shown in this work. If the units of
field are chosen as statvolt/cm,xs3d=−10−4 taken in our cal-
culation corresponds toxs3d=−10−4 esu, and the value of
uEF

+s0du=1–7 in Figs. 2 and 3 then givesuEF
+s0du

=1–7 statvolt /cm, which corresponds to a laser power ofI
=s1/2dc«0uEF

+s0du2<180–8820 W/cm2. Thus, for a more re-
alistic numberxs3d=−10−9 esu, the value ofuEF

+s0du=1–7
corresponds to a laser power ofI <18–882 MW/cm2, which
is attainable in practice.

In conclusion, we demonstrate that the TH conversion ef-
ficiency can be enhanced by about three orders of magnitude

FIG. 3. Third-harmonic conversion efficiencies,IHsLd / I0 ssolid
linesd and IHs0d / I0 sdotted linesd, versus the incident amplitude
uE1

+s0du for lF=892.5 nmsad andlF=891 nmsbd. scd Transmission
IFsLd / I0 ssolid lined and reflectionIFs0d / I0 sdotted lined versus
uE1

+s0du for lF=891 nm. IHsLd= uEH
+ sLdu2, IHs0d= uEH

− s0du2, IFsLd
= uEF

+sLdu2, IFs0d= uEF
−s0du2, and I0= uEF

+s0du2. The inset shows the
transmissionIFsLd / I0 of the beam withlF=891 nm without the
third-harmonic conversion.

FIG. 4. Intensity distributions normalized byI0 for lF

=892.5 nmsdotted curved andlH=297.5 nmssolid curved at point
A8 of Fig. 3sad.
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through the formation of a coupled localized state inxs3d

NPCs as compared with that in a bulk medium of the same
length with a perfect phase-matching condition. This local-
ized state couples the fundamental and TH waves located in
different gaps. Its existence is a result of both Kerr effect and

large energy transfer between fundamental and TH waves
throughxs3d nonlinearity.
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